A comparison of spatial sampling techniques enabling first principles modeling of a synthetic aperture RADAR imaging platform

نویسندگان

  • Michael Gartley
  • Adam Goodenough
  • Scott Brown
  • Russel P. Kauffman
چکیده

Simulation of synthetic aperture radar (SAR) imagery may be approached in many different ways. One method treats a scene as a radar cross section (RCS) map and simply evaluates the radar equation, convolved with a system impulse response to generate simulated SAR imagery. Another approach treats a scene as a series of primitive geometric shapes, for which a closed form solution for the RCS exists (such as boxes, spheres and cylinders), and sums their contribution at the antenna level by again solving the radar equation. We present a ray-tracing approach to SAR image simulation that treats a scene as a series of arbitrarily shaped facetized objects, each facet potentially having a unique radio frequency optical property and time-varying location and orientation. A particle based approach, as compared to a wave based approach, presents a challenge for maintaining coherency of sampled scene points between pulses that allows the reconstruction of an exploitable image from the modeled complex phase history. We present a series of spatial sampling techniques and their relative success at producing accurate phase history data for simulations of spotlight, stripmap and SAR-GMTI collection scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution

Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...

متن کامل

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies

Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...

متن کامل

HF Radar Signal Processing Based on Tomographic Imaging and CS Technique

This study presents the application of a spotlight-mode synthetic aperture radar (SAR) imaging technique to the problem of high probablity target detection in high frequency (HF) radar system, attempting to improve its spatial resolution. The effects of finite aperture on resolution, sampling constraints and reconstruction over a complete angular range of 360 degrees are discussed. A Convolutio...

متن کامل

A Robust SAR NLFM Waveform Selection Based on the Total Quality Assessment Techniques

Design, simulation and optimal selection of cosine-linear frequency modulation waveform (CNLFM) based on correlated ambiguity function (AF) method for the purpose of Synthetic Aperture Radar (SAR) is done in this article. The selected optimum CNLFM waveform in contribution with other waveforms are applied directly into a SAR image formation algorithm (IFA) and their quality effects performance ...

متن کامل

Extended ratio edge detector for despeckled SAR image evaluation

Synthetic aperture radar (SAR) images due to the usage of coherent imaging systems are affected by speckle. So lots of despeckling filters have been introduced up to now to suppress the speckle. Hence, objective and subjective evaluation of the denoised SAR images becomes a necessity. Thereby lots of objective evaluating estimators are introduced to evaluate the performance of despeckling filte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010